183 research outputs found

    B-Cell and Monocyte Contribution to Systemic Lupus Erythematosus Identified by Cell-Type-Specific Differential Expression Analysis in RNA-Seq Data

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by complex interplay among immune cell types. SLE activity is experimentally assessed by several blood tests, including gene expression profiling of heterogeneous populations of cells in peripheral blood. To better understand the contribution of different cell types in SLE pathogenesis, we applied the two methods in cell-type-specific differential expression analysis, csSAM and DSection, to identify cell-type-specific gene expression differences in heterogeneous gene expression measures obtained using RNA-seq technology. We identified B-cell-, monocyte-, and neutrophil-specific gene expression differences. Immunoglobulin-coding gene expression was altered in B-cells, while a ribosomal signature was prominent in monocytes. On the contrary, genes differentially expressed in the heterogeneous mixture of cells did not show any functional enrichment. Our results identify antigen binding and structural constituents of ribosomes as functions altered by B-cell- and monocyte-specific gene expression differences, respectively. Finally, these results position both csSAM and DSection methods as viable techniques for celltype-specific differential expression analysis, which may help uncover pathogenic, cell-type-specific processes in SLE

    Epstein Barr Virus Interleukin 10 Suppresses Anti-inflammatory Phenotype in Human Monocytes

    Get PDF
    Epstein Barr virus (EBV) is a gamma herpes virus associated with certain malignancies and autoimmune diseases. EBV maintains latency in B cells with occasional reactivation, in part by overcoming the host immune response with viral homologs of several human proteins. EBV interleukin 10 (vIL-10), a lytic phase protein, is a homolog of human IL-10 (hIL-10). The effect of vIL-10 on human monocytes, which are one of the first immune cells to respond to infection, is not known. To understand the role of vIL-10, monocytes from peripheral blood mononuclear cells were stimulated with hIL-10 or vIL-10. Human IL-10 stimulated STAT3 phosphorylation, which is required for suppression of inflammatory responses. However, vIL-10 induced significantly lower phosphorylation of STAT3 compared to hIL-10, and was less efficient in downregulating inflammatory genes. vIL-10 significantly reduced the expression of scavenger receptor CD163 on monocytes, suggesting inhibition of M2 polarization. Furthermore, uptake of apoptotic cells was reduced in vIL-10-stimulated monocytes compared to hIL-10-stimulated monocytes. A neutralizing antibody to IL-10R1 inhibited STAT3 phosphorylation induced by either hIL-10 or vIL-10, suggesting that vIL-10 signals through IL-10R1. Interestingly, vIL-10 suppressed hIL-10-induced STAT3 phosphorylation and inhibited upregulation of suppressors of inflammatory response by hIL-10. We further show that vIL-10 levels were significantly higher in plasma samples from systemic lupus erythematosus (SLE) patients compared to matched unaffected controls. vIL-10 levels did not correlate with hIL-10 levels, but were associated with levels of IgA antibodies to EBV viral capsid antigen, which is an indirect measure of viral reactivation. We propose that the suppression of hIL-10- induced anti-inflammatory genes by vIL-10, together with an increase in inflammatory gene expression, may overcome the anti-inflammatory effects of hIL-10 and exacerbate autoimmune responses in systemic autoimmune diseases

    Internal standard-based analysis of microarray data2—Analysis of functional associations between HVE-genes

    Get PDF
    In this work we apply the Internal Standard-based analytical approach that we described in an earlier communication and here we demonstrate experimental results on functional associations among the hypervariably-expressed genes (HVE-genes). Our working assumption was that those genetic components, which initiate the disease, involve HVE-genes for which the level of expression is undistinguishable among healthy individuals and individuals with pathology. We show that analysis of the functional associations of the HVE-genes is indeed suitable to revealing disease-specific differences. We show also that another possible exploit of HVE-genes for characterization of pathological alterations is by using multivariate classification methods. This in turn offers important clues on naturally occurring dynamic processes in the organism and is further used for dynamic discrimination of groups of compared samples. We conclude that our approach can uncover principally new collective differences that cannot be discerned by individual gene analysi

    Identification of Unique MicroRNA Signature Associated with Lupus Nephritis

    Get PDF
    MicroRNAs (miRNA) have emerged as an important new class of modulators of gene expression. In this study we investigated miRNA that are differentially expressed in lupus nephritis. Microarray technology was used to investigate differentially expressed miRNA in peripheral blood mononuclear cells (PBMCs) and Epstein-Barr Virus (EBV)-transformed cell lines obtained from lupus nephritis affected patients and unaffected controls. TaqMan-based stem-loop real-time polymerase chain reaction was used for validation. Microarray analysis of miRNA expressed in both African American (AA) and European American (EA) derived lupus nephritis samples revealed 29 and 50 differentially expressed miRNA, respectively, of 850 tested. There were 18 miRNA that were differentially expressed in both racial groups. When samples from both racial groups and different specimen types were considered, there were 5 primary miRNA that were differentially expressed. We have identified 5 miRNA; hsa-miR-371-5P, hsa-miR-423-5P, hsa-miR-638, hsa-miR-1224-3P and hsa-miR-663 that were differentially expressed in lupus nephritis across different racial groups and all specimen types tested. Hsa-miR-371-5P, hsa-miR-1224-3P and hsa-miR-423-5P, are reported here for the first time to be associated with lupus nephritis. Our work establishes EBV-transformed B cell lines as a useful model for the discovery of miRNA as biomarkers for SLE. Based on these findings, we postulate that these differentially expressed miRNA may be potential novel biomarkers for SLE as well as help elucidate pathogenic mechanisms of lupus nephritis. The investigation of miRNA profiles in SLE may lead to the discovery and development of novel methods to diagnosis, treat and prevent SLE

    Effects of IRF5 Lupus Risk Haplotype on Pathways Predicted to Influence B Cell Functions

    Get PDF
    Both genetic and environmental interactions affect systemic lupus erythematosus (SLE) development and pathogenesis. One known genetic factor associated with lupus is a haplotype of the interferon regulatory factor 5 (IRF5) gene. Analysis of global gene expression microarray data using gene set enrichment analysis identified multiple interferon- and inflammation-related gene sets significantly overrepresented in cells with the risk haplotype. Pathway analysis using expressed genes from the significant gene sets impacted by the IRF5 risk haplotype confirmed significant correlation with the interferon pathway, Toll-like receptor pathway, and the B-cell receptor pathway. SLE patients with the IRF5 risk haplotype have a heightened interferon signature, even in an unstimulated state (P = 0.011), while patients with the IRF5 protective haplotype have a B cell interferon signature similar to that of controls. These results identify multiple genes in functionally significant pathways which are affected by IRF5 genotype. They also establish the IRF5 risk haplotype as a key determinant of not only the interferon response, but also other B-cell pathways involved in SLE

    A Comprehensive and Universal Method for Assessing the Performance of Differential Gene Expression Analyses

    Get PDF
    The number of methods for pre-processing and analysis of gene expression data continues to increase, often making it difficult to select the most appropriate approach. We present a simple procedure for comparative estimation of a variety of methods for microarray data pre-processing and analysis. Our approach is based on the use of real microarray data in which controlled fold changes are introduced into 20% of the data to provide a metric for comparison with the unmodified data. The data modifications can be easily applied to raw data measured with any technological platform and retains all the complex structures and statistical characteristics of the real-world data. The power of the method is illustrated by its application to the quantitative comparison of different methods of normalization and analysis of microarray data. Our results demonstrate that the method of controlled modifications of real experimental data provides a simple tool for assessing the performance of data preprocessing and analysis methods

    Internal standard-based analysis of microarray data2—Analysis of functional associations between HVE-genes

    Get PDF
    In this work we apply the Internal Standard-based analytical approach that we described in an earlier communication and here we demonstrate experimental results on functional associations among the hypervariably-expressed genes (HVE-genes). Our working assumption was that those genetic components, which initiate the disease, involve HVE-genes for which the level of expression is undistinguishable among healthy individuals and individuals with pathology. We show that analysis of the functional associations of the HVE-genes is indeed suitable to revealing disease-specific differences. We show also that another possible exploit of HVE-genes for characterization of pathological alterations is by using multivariate classification methods. This in turn offers important clues on naturally occurring dynamic processes in the organism and is further used for dynamic discrimination of groups of compared samples. We conclude that our approach can uncover principally new collective differences that cannot be discerned by individual gene analysis

    The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by increased type I interferons (IFNs) and multiorgan inflammation frequently targeting the skin. IFN-kappa is a type I IFN expressed in skin. A pooled genome-wide scan implicated the IFNK locus in SLE susceptibility. We studied IFNK single nucleotide polymorphisms (SNPs) in 3982 SLE cases and 4275 controls, composed of European (EA), African-American (AA), and Asian ancestry. rs12553951C was associated with SLE in EA males (odds ratio = 1.93, P = 2.5 × 10−4), but not females. Suggestive associations with skin phenotypes in EA and AA females were found, and these were also sex-specific. IFNK SNPs were associated with increased serum type I IFN in EA and AA SLE patients. Our data suggest a sex-dependent association between IFNK SNPs and SLE and skin phenotypes. The serum IFN association suggests that IFNK variants could influence type I IFN producing plasmacytoid dendritic cells in affected skin

    Genetic Association of a Gain-of-Function IFNGR1 Polymorphism and the Intergenic Region LNCAROD/DKK1 With Behcet's Disease

    Get PDF
    Objective. Behçet’s disease is a complex systemic inflammatory vasculitis of incompletely understood etiology. This study was undertaken to investigate genetic associations with Behçet’s disease in a diverse multiethnic population.Methods. A total of 9,444 patients and controls from 7 different populations were included in this study. Genotyping was performed using an Infinium ImmunoArray- 24 v.1.0 or v.2.0 BeadChip. Analysis of expression data from stimulated monocytes, and epigenetic and chromatin interaction analyses were performed.Results. We identified 2 novel genetic susceptibility loci for Behçet’s disease, including a risk locus in IFNGR1(rs4896243) (odds ratio [OR] 1.25; P = 2.42 × 10−9) and within the intergenic region LNCAROD/DKK1 (rs1660760) (OR 0.78; P = 2.75 × 10−8). The risk variants in IFNGR1 significantly increased IFNGR1 messenger RNA expression in lipopolysaccharide- stimulated monocytes. In addition, our results replicated the association (P 30 genetic susceptibility loci with a suggestive level of association (P < 5 × 10−5), which will require replication. Finally, functional annotation of genetic susceptibility loci in Behçet’s disease revealed their possible regulatory roles and suggested potential causal genes and molecular mechanisms that could be further investigated.Conclusion. We performed the largest genetic association study in Behçet’s disease to date. Our findings reveal novel putative functional variants associated with the disease and replicate and extend the genetic associations in other loci across multiple ancestries

    Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4

    Get PDF
    We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10-34, OR = 1.43[1.26-1.60]) and rs1234317-T (P = 1.16×10-28, OR = 1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait. © 2013 Manku et al
    corecore